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Abstract. We consider instabilities of a single mode with finite wavenumber in inversion
symmetric spatially one-dimensional systems, where the character of the bifurcation changes
from sub- to supercritical behaviour. Starting from a general equation of motion the full
amplitude equation is derived systematically and formulae for the dependence of the coefficients
on the system parameters are obtained. We emphasize the importance of nonlinear derivative
terms in the amplitude equation for the behaviour in the vicinity of the bifurcation point.
In particular the numerical values of the corresponding coefficients determine the region of
coexistence between the stable trivial solution and stable spatially periodic patterns. Our
approach clearly shows that similar considerations fail for the case of oscillatory instabilities.

1. Introduction

Recently pattern formation in systems of large size has attracted much research interest.
In particular the fact that many aspects, at least of one-dimensional systems or of quasi-
one-dimensional patterns, can be described by reduced equations of motion has allowed for
linking quite different fields of physics (cf [1] and references therein). To some extent the
approach strongly parallels the normal form calculations in low dimensional dynamical
systems [2]. The reduced equations for simple instabilities, i.e. the Ginzburg–Landau
equation is well established and its derivation can even be found in textbooks [3]. However,
at least from the general point of view, less is known if additional constraints are imposed
on the instability, that means if higher-order codimension bifurcations are considered.

Here we are concerned with instabilities in spatially one-dimensional systems where a
single mode becomes unstable with respect to a wavenumberqc owing to an eigenvalue
zero in the spectrum. Such a situation occurs generically in inversion symmetric situations
and we henceforth consider such systems. Letλ(k, µ) denote the corresponding critical
eigenvalue in dependence on the wavenumberk and the system parametersµ. It obeys

λ(qc, µ) = 0 ∂kλ(k, µ)|k=qc = 0 ∂2
k λ(k, µ)|k=qc < 0. (1)

These conditions trace a codimension one set, i.e. a hypersurface in the parameter space on
which the instability occurs. It is well established, even from a rigorous point of view [4],
that the dynamics near such an instability is governed by a slowly varying envelope which
obeys a real Ginzburg–Landau equation. Whether the instability is sub- or supercritical, i.e.
whether the amplitude saturates in the vicinity of the instability, depends on the sign of the
cubic term. The transition from sub- to supercriticality, i.e. the change of the sign, leads to
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a codimension-two bifurcation†. It is of course contained in the bifurcation set determined
by equations (1). Such instabilities which, for example, are relevant in the hydrodynamic
context (cf [5] for a recent reference) are at the centre of interest of our contribution.

From pure symmetry considerations the structure of the reduced amplitude equation
may be fixed, taking the translation and inversion symmetry into account

∂τ Ā = η̄Ā+D∂2
ξ Ā+ r̄|Ā|2Ā+ s|Ā|4Ā+ ig|Ā|2∂ξ Ā+ idĀ2∂ξ Ā

∗. (2)

However, these considerations do not tell us whether such an equation is valid at all, and
how the coefficients depend on the actual parameters of the underlying equations of motion.
We present the complete derivation of the amplitude equation (2) starting from a general
equation of motion, even if the method is in principle well established in the hydrodynamic
context. However, our approach is purely algebraic and has the advantage that the results
can be applied immediately to quite different physical situations. As a by-product we remark
that for the similar hard-mode case a comparable approach fails, in contrast to statements in
the literature. Finally we shall dwell on some properties of equation (2), since a complete
discussion is difficult to find in the literature, despite the fact that related results from
different points of view can be found quite frequently [6–9].

2. Derivation of the amplitude equation

2.1. Notation

We suppose that the basic equation of motion for theN -component real field8(x, t) is cast
into the form

∂t8 = Lµ8+N [8;µ] (3)

such that the trivial translation invariant stationary state is given by8 ≡ 0‡. For the linear
operator, which determines the instability of this state, we allow for an expression as general
as possible, i.e.

Lµ9 =
∑
α

L
α
(µ)∂αx 9. (4)

Using plane-wave solutionsu exp(ikx) the eigenvalue problem is completely determined by
theN ×N matrices

L(k;µ) =
∑
α

L
α
(µ)(ik)α (5)

according to

L(k;µ)uk(µ) = λ(k, µ)uk(µ). (6)

We denote byλ the eigenvalue branch with maximal real part, which obeys equations (1)
at the instability. In our case the inversion symmetry guarantees that all quantities are real
valued.

For the nonlinear part we employ an expansion in powers of the field according to

N (9;µ) = N2(9;µ)+N3(9;µ)+N4(9;µ)+N5(9;µ)+ · · · (7)

† Sometimes such a bifurcation point is called a tricritical point, in order to distinguish it from a codimension-two
bifurcation caused by the degeneracy of two distinct modes.
‡ In particular we concentrate on situations where boundary conditions play no significant role, so that we can
consider formally systems of infinite extent.
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where

N2(9;µ) =
∑
α,β

C(αβ)µ {∂αx 9, ∂βx 9} (8)

N3(9;µ) =
∑
α,β,γ

D(αβγ )
µ {∂αx 9, ∂βx 9, ∂γx 9} (9)

denote the most general expressions of second and third order, with vector valued bi- and
trilinear formsC(αβ) andD(αβγ ). Written in component form they read, for example,

(C(αβ)µ {u, v})m =
∑
k,l

c
(αβ)

µ;mklukvl. (10)

The contributions of order 4 and 5 are understood in the same way using the notation
E(αβγ δ) andF (αβγ δε) for the corresponding multilinear forms†. In the subsequent analysis
it is necessary to evaluate the nonlinearities if plane waves are inserted for the field. To be
specific only waves with the multiples of the critical wavenumberqc will occur. In such a
case all the nonlinearities are expressed in terms of the abbreviations (cf equation (5))

Cmn(u, v;µ) :=
∑
αβ

(imqc)
α(inqc)

βC(αβ)µ {u, v} (11)

Dlmn(u, v,w;µ) :=
∑
αβγ

(ilqc)
α(imqc)

β(inqc)
γD(αβγ )

µ {u, v,w} (12)

Eklmn(u, v,w, x;µ) :=
∑
αβγ δ

(ikqc)
α(ilqc)

β(imqc)
γ (inqc)

δE(αβγ δ)µ {u, v,w, x} (13)

Fjklmn(u, v,w, x, y;µ) :=
∑
αβγ δε

(ijqc)
α(ikqc)

β(ilqc)
γ (imqc)

δ(inqc)
εF (αβγ δε)µ {u, v,w, x, y}

(14)

which are frequently used in what follows.

2.2. Weakly nonlinear analysis

Suppose that atµ = µ
c

a degenerated soft-mode instability occurs. Letuc exp(iqcx) denote
the marginally stable mode, i.e.uc = uqc (µc) is the null eigenvector of the matrix (5) at
µ = µ

c
andk = qc. In the vicinity of this parameter value, i.e. for

µ = µ
c
+ εµ(1) + ε2µ(2) + · · · (15)

the solution of the full equation is expanded as

8(x, t) = ε1/281+ ε82+ ε3/283+ ε284+ ε5/285+ · · · (16)

81 = uc exp(iqcx)A(τ1, τ2, . . . , ξ1, ξ2, . . .)+ c.c. (17)

whereε denotes a dimensionless smallness parameter. As usual the dynamics of the complex
valued amplitudeA, which possesses a slowly varying spacetime dependence on the scales
τk = εkt , ξk = εkx, will be determined by the secular conditions of the expansion. However,
before we proceed let us comment on the choice of the expansion. The actual expansion
parameter is given byε1/2 and for completeness the slow scalesε1/2t andε1/2x should also
be taken into account. However, as will become obvious from the following considerations
these scales drop and do not contribute. The same conclusion holds for expression (15),

† In addition the symmetry propertiesC(αβ){u, v} = C(βα){v, u}, D(αβγ ){u, v,w} = D(γαβ){w, u, v, } = . . . , . . .
are employed in what follows.
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whereµ(1,2) act as unfolding parameters. In addition, sinceµ(1) will be confined along the
codimension-one set of soft-mode bifurcations, the real unfolding of the bifurcation occurs
at O(ε2). Hence the scaling of the amplitude in equation (16) coincides with the scaling in
the corresponding spatially homogeneous situation. Nevertheless, we stress again that the
inclusion of all terms O(εk/2) yields the same results as presented below.

If one inserts expansion (15) into the definitions (4) and (7) one obtains

Lµ = L+ εL(1) + ε2L(2) + · · · (18)

and

Nk(9;µ) = Nk(9)+ εN (1)
k (9)+ · · · . (19)

Here the terms of higher order contain the parametersµ(1,2). In order to simplify the notation
we do not introduce a different symbol for the contributions of order zero, but just skip the
argumentµ. Even this convention introduces a slight abuse of notation, it is henceforth
understood that the corresponding expressions are evaluated atµ = µ

c
, e.g.L := Lµ

c
.

Analogous expansions hold for quantities such as equation (5) or (11)–(14). In particular the
matrix L(k) = L(k;µ

c
) determines the critical mode andL(1)(k) = (µ(1)∂µ)L(k;µ)|µ=µ

c
.

The following steps are now the same as for the usual codimension-one case and can
be found in textbooks. If one inserts expansion (16) into the equation of motion (3), taking
equations (18) and (19) into account and performing the derivatives with respect to all scales,
then one obtains at each order inεk/2 an inhomogeneous linear equation determining8k

∂t8k = L8k +
∑
n

exp(inqcx)wn. (20)

The inhomogeneous part typically contains Fourier modes with integer multiples of the
critical mode, and the slow scales are just considered as fixed parameters. Ifvc denotes
the left null eigenvector of the critical mode, i.e.v∗cL(qc) = 0, then the condition that the
solution of equation (20) does not become secular reads

〈vc|wn=1〉 = 0. (21)

Here the brackets denote the usual scalar product. Now the solution, discarding
exponentially decaying transients, reads

8k = −
∑
n6=±1

L(nqc)
−1wn exp(inqcx)− (L−1

c
wn=1 exp(iqcx)

+ucZ(τ1, . . . , ξ1, . . .)exp(iqcx)+ c.c.) (22)

where the coefficientZ of the solution of the homogeneous equation may depend on the
slower scales.L−1

c
denotes the inverse on the subspace omitting the critical mode, i.e.

L−1
c
L(qc) = L(qc)L−1

c
= 1− |uc〉〈vc| L−1

c
uc = 0 v∗cL

−1
c
= 0. (23)

The reason that we reiterate this scheme here is twofold. On the one hand we would like to
give the reader the chance, within the amount of formalism to relax with a passage, which
he or she of course knows quite well. On the other hand the textbooks mentioned above
usually stop with such general considerations or specialize to certain conditions which may
not be shared by the model under consideration. Here we will continue with the most
general equation of motion, even if we have to proceed to the fifth order. We demonstrate
that the explicit evaluation is not at all horrible within a suitable notation.

At the order O(ε1/2) equation (20) just yields the eigenvalue equation for the critical
mode (cf equation (6)). At O(ε) the quadratic nonlinearity contributes nonresonant Fourier
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modes±2qc, 0 to the inhomogeneous part (cf equation (A3)), so that no nontrivial secular
condition occurs. The solution (22) reads in this case

82 = 2020|A|2+ (022 exp(i2qcx)A
2+ uc exp(iqcx)B + c.c.) (24)

where the amplitudeB of the homogeneous solution depends on the slower scales and the
abbreviations (A4) are introduced.

At the third order O(ε3/2) the quadratic and cubic nonlinearity contribute as well
as the linear operatorsL and ∂t , if the derivatives with respect to the slow scales are
performed. The complete inhomogeneous part of equation (22) is for convenience given in
equation (A6). The secular condition (21) yields

0= −〈vc|uc〉∂τ1A+ 〈vc|L(1)(qc) uc〉A+ ρ3A|A|2 (25)

if we equate the coefficient of∂ξ1A to zero with the help of equation (1). In the usual
codimension-one case we would now end up with the Ginzburg–Landau equation. Here,
however, we require that the coefficient of the cubic term vanishes†

ρ3(qc;µc) := 〈vc|2C21̄(022, uc)+ 4C10(uc, 020)+ 3D111̄(uc, uc, uc)〉 != 0. (26)

Together with condition (1) this equation determines the codimension-two bifurcation
manifold. Since the secular condition (25) has to yield a finite and nonvanishing solution,
we finally have to require that both of the two remaining terms vanish separately. Hence
we are left with

∂τ1A = 0 (27)

and

µ(1)∂µλ(qc, µ)|µ=µ
c
= 0 (28)

if we take into account, that the matrix element in equation (25) can be expressed in terms of
a directional derivative owing to definitions (15) and (18). The condition (28) has a simple
geometrical interpretation (cf figure 1). If we take the total derivative of equations (1)
with respect toµ along a direction in the codimension one-bifurcation manifold, i.e. we
take the dependence of the critical wavenumber onµ into account, we are exactly left with
equation (28). Hence the secular condition fixes the parameter variationµ(1) at O(ε) in such
a way that only variations within the soft-mode instability manifold are permitted. The full
parameter unfolding is obtained at higher order. We remark that similar considerations
exclude the spatial scaleε1/2x from the perturbation expansion. For the solution we now
obtain the result

83 = [031A|A|2− iγ a
31
∂ξ1A+ γ b31

A] exp(iqcx)+ 033 exp(i3qcx)A
3

+2020AB
∗ + 2022 exp(i2qcx)AB + uc exp(iqcx)C + c.c. (29)

using abbreviations (A8)-(A10).
At O(ε2) also the parameter dependence of the nonlinearities (cf equation (19))

contributes. The inhomogeneous part, which is given in equation (A12) up to Fourier
modes 2qc yields for the secular condition (21), taking the secular condition (28) of the
preceding order into account

0= −〈vc|uc〉∂τ1B + ρ3[2|A|2B + A2B∗]. (30)

By virtue of the higher order codimension condition (26) we are left with

∂τ1B = 0. (31)

† Indices with an overbar denote negative valuesn̄ := −n.
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Figure 1. Diagrammatic view of the parameter space in the vicinity of the degenerated soft-
mode bifurcation pointµ

c
. The full curve indicates the soft-mode bifurcation manifold and

µ(1,2) the unfolding vectors (cf equation (15)).

For the solution at this order we have, if we restrict to Fourier modes±2qc, 0 which will
become resonant at the next order

84 = 040|A|4+ 2γ b
40
|A|2+ 2020|B|2+ (2iγ a

40
A∂ξ1A

∗ + 2020AC
∗ + exp(i2qcx)

×[042A
2|A|2+ 2iγ a

42
A∂ξ1A+ 2022AC + γ b42

A2+ 022B
2] + c.c.)+ . . . .

(32)

The coefficients are given by equations (A13)–(A18).
We now plug in all the results to compute the secular condition at O(ε5/2) and obtain,

taking equations (1), (27), (28) and (31) into account

〈vc|uc〉[−∂τ2A+ ηA+D∂2
ξ1
A+ ic∂ξ1A+ rA|A|2+ sA|A|4+ ig|A|2∂ξ1A+ idA2∂ξ1A

∗]

+ρ3[2|A|2C + A2C∗ + A∗B2+ 2A|B|2] − 〈vc|uc〉∂τ1C = 0. (33)

Thanks to the higher order codimension condition (26) the nonlinear terms which couple
the different amplitudes vanish. Furthermore the last summand, being solely dependent on
the scaleτ1 has to vanish too, in order to avoid a secular contribution. If we introduce
Ā := exp[icξ1/(2D)]A to eliminate the linear derivative term, we are left with the closed
amplitude equation (2), where

η̄ := η + c2/(4D) r̄ := r + c(g − d)/(2D). (34)

It is worth a mention that our formalized approach has enabled us to incorporate the higher
order codimension condition at all steps in the perturbation expansion.

2.3. Coefficients

In addition we have obtained the general microscopic expressions for the coefficients. We
use the notation introduced in section 2.1 and the abbreviations of the appendix.

The linear unfolding parameter reads

〈vc|uc〉η := 〈vc|L(1)(qc)γ b31
〉 + 〈vc|L(2)(qc)uc〉 = 〈vc|uc〉[1/2(µ(1)∂µ)2λ(qc, µ)|µ=µc

+(µ(2)∂µ)λ(qc, µ)|µ=µ
c
] (35)

where the last expression follows from definitions (15) and (18) straightforwardly. Hence
the linear unfolding contains a contribution from the curvature of the bifurcation manifold
and one from the transversal intersection.
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The diffusion constant is given by

〈vc|uc〉D := −1/2〈vc|L′′(qc)uc〉 − 〈vc|L′(qc)γ a31
〉 = −1/2〈vc|uc〉∂2

k λ(k, µc
)|k=qc . (36)

For the linear derivative term we have obtained

〈vc|uc〉c := 〈uc| − L′(qc)γ b31
− L(1)(qc)γ a31

− (L(1))′(qc)uc〉
= − 〈vc|uc〉∂k(µ(1)∂µ)λ(k, µ)|k=qc,µ=µc . (37)

In view of relations (1) the derivative can also be expressed in terms of the change of the
critical wavenumber along the soft-mode bifurcation manifold.

The cubic unfolding coefficient reads

〈vc|uc〉r := 〈vc|L(1)(qc)031+ 2C21̄(022, γ
b

31
)+ 2C21̄(γ

b

42
, uc)+ 4C10(γ

b

31
, 020)

+4C10(uc, γ
b

40
)+ 6D111̄(γ

b

31
, uc, uc)+ 3D111̄(uc, uc, γ

b

31
)

+2C(1)
21̄
(022, uc)+ 4C(1)10 (uc, 020)+ 3D(1)

111̄
(uc, uc, uc)〉. (38)

If we use here representations (A10), (A20), and (A21) as well as the higher order
codimension relation (26) the expression simplifies to

〈vc|uc〉r = (µ(1)∂µ)ρ3(qc;µ)|µ
c
=µ (39)

if we define the object on the right-hand side by equation (26) but evaluated with the full
parameter-dependent nonlinearities (11), (12) and eigenvectors (cf equation (6)).

The evaluation of the coefficient of the quintic term yields

〈vc|uc〉s := 〈vc|2C10(uc, 040)+ 2C21̄(022, 031)+ 2C21̄(042, uc)+ 2C32̄(033, 022)

+4C10(031, 020)+ 6D111̄(031, uc, uc)+ 3D111̄(uc, uc, 031)

+3D31̄1̄(033, uc, uc)+ 6D212̄(022, uc, 022)+ 12D100(uc, 020, 020)

+12D201̄(022, 020, uc)+ 4E111̄2(uc, uc, uc, 022)+ 12E211̄1̄(022, uc, uc, uc)

+24E110̄1(uc, uc, 020, uc)+ 10F 111̄11̄(uc, uc, uc, uc, uc)〉. (40)

This expression is a genuine term of the fifth order and cannot be reduced further.
For the normal derivative term the coefficient reads

〈vc|uc〉g := 〈vc| − 2L′(qc)031− 4C10(uc, γ
a

40
)+ 4C21̄(γ

a

42
, uc)

−4C10(γ
a

31
, 020)− 4C̃01(020, uc)− 4C̃10(uc, 020)− 4C̃21̄(022, uc)

−6D111̄(γ
a

31
, uc, uc)− 6D̃111̄(uc, uc, uc)〉 (41)

whereas for the odd derivative term we obtain

〈vc|uc〉d := 〈vc| − L′(qc)031+ 4C10(uc, γ
a

40
)+ 2C21̄(022, γ

a

31
)− 4C̃01(020, uc)

−2C̃1̄2(uc, 022)+ 3D111̄(uc, uc, γ
a

31
)− 3D̃1̄11(uc, uc, uc)〉 . (42)

All coefficients are real valued, since the constituents are real owing to the symmetry
of the underlying system. The coefficients of the linear terms can be expressed in terms of
the spectrum. In addition, the cubic unfolding is obtained as a formal parameter derivative
of the cubic coefficient of the ordinary Ginzburg–Landau equation. One should note that
this contribution and the linear derivative term are both caused by the parameter variation
along the codimension-one bifurcation manifold and are easily missed if the parameters are
not unfolded according to equation (15). The mentioned properties are not passed to the
amplitude equation (2), since the coefficients are renormalized by equations (34). For the
remaining coefficients no simple interpretation seems to be available.
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3. Properties of the amplitude equation

Partial discussions of equation (2) from different points of view can be found in the literature
[9]. Here we focus on those results which have in our opinion consequences for the
behaviour near the codimension-two bifurcation point.

First the coefficientsD and s have to be positive, respectively negative, in order to
yield a bounded solution. We confine the subsequent analysis to this case. Hence these
coefficients can be incorporated in the length scale as well as the magnitude ofĀ and an
additional parameter can be eliminated by a rescaling of the time. However, since no real
simplification is achieved we discuss the unscaled equation directly.

3.1. Potential case

In the absence of the odd derivative term,d = 0, equation (2) admits a potentialL = ∫ ` dx
decreasing in time, with density

` := −η̄|Ā|2+D|∂ξ Ā|2− r̄/2|Ā|4− s/3|Ā|6− ig/4|Ā|2(Ā∗∂ξ Ā− Ā∂ξ Ā∗)
= − η̄|Ā|2+D ∣∣∂ξ Ā+ ig/(4D)|Ā|2Ā∣∣2− r̄/2|Ā|4− [s/3+ g2/(16D)]|Ā|6.

(43)

The potential is definite fors < −3g2/(16D), so that in some sense every solution tends
to a time-independent state. However, if the inequality is violated, e.g. ifg is too large, the
solutions may diverge. The potential property seems to be destroyed, if an odd derivative
term is present.

3.2. Bifurcation scenario

The trivial stateĀ = 0 of the amplitude equation is stable ifη̄ < 0. Beyond this threshold
time-independent plane waves emerge from this solution. For the existence of these solutions
Ā = ακ exp(iκξ) we obtain from equation (2) the condition

0= η̄ −Dκ2+ (r̄ −1κ)|ακ |2+ s|ακ |4. (44)

The quantity1 := g − d completely incorporates the dependence on the normal and the
odd derivative term.

Consider for the moment an arbitrary but fixed wavenumberκ. Equation (44) determines
the bifurcations of the corresponding plane wave. It is evident that at

η̄ = Dκ2 (45)

a wave emerges from the trivial solution, and it is generated in parameter space on that side
of the bifurcation set where the inequality

(η̄ −Dκ2)(r̄ −1κ) < 0 (46)

is valid. Hence this peculiar bifurcation changes from sub- to supercritical behaviour at
r̄ = 1κ, i.e. at

η̄ = Dr̄2/12. (47)

Now we are considering larger amplitudesαk and concentrate on the case, where the waves
exhibit a saddle-node bifurcation. If we rewrite equation (44) in the form

0= s
[(
|ακ |2− r̄ −1κ−2s

)2

−
(
r̄ −1κ
−2s

)2

− η̄ −Dκ
2

−s

]
(48)
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Figure 2. Sketch of a partial bifurcation diagram of the amplitude equation (2) in ther̄–η̄
plane. The heavy broken curve indicates the instability of the trivial state. The light broken
curve represents the bifurcation of plane waves from the trivial state for a wave numberκ with
1κ > 0 (cf equation (45)). The pitchfork-like insets indicate whether the bifurcations are sub- or
supercritical and the light dotted line gives the transition for all wavenumbers (cf equation (47)).
The light full curve marks the saddle-node bifurcation for the plane wave (cf equation (49)).
The corresponding features for the wavenumber−κ are displayed in grey. Finally the heavy full
curve marks the envelope of saddle-node bifurcation lines for all wavenumbers (cf equation (51)).

we immediately recognize that a saddle-node bifurcation occurs at

η̄ = Dκ2− (−s)
(
r̄ −1κ
−2s

)2

(49)

provided that the inequality

(r̄ −1κ)/(−2s) > 0 (50)

holds. The content of equations (45)–(50) is summarized in figure 2 for a particular
wavenumberκ. The region of existence of a plane-wave solution, which is bounded by
equation (49) extends beyond the stability region of the trivial state.

We now have to perform the analysis presented above for every wavenumberκ. The
region where plane-wave solutions exist is given by the union of the regions described above.
Hence its boundary is determined by the envelope of the curves (49) for all wavenumbers.
It is easily computed as (cf figure 2)

η̄ = −Dr̄2/[4D(−s)−12] (r̄ > 0) if |1| < 1c := 2
√
D(−s). (51)

If |1| approaches1c the parabola (51) degenerates with the negativeη̄-axis. For|1| > 1c

no boundary exists at all, so that for everyη̄ < 0 there exist plane-wave solutions.
In summary, the scenario for|1| < 1c resembles the sub–supercritical transition in

low-dimensional dynamical systems, where a saddle-node bifurcation line is typically born.
However, in the extended case this behaviour is destroyed at|1| = 1c, which can be
viewed as a codimension-three bifurcation point.
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Yet we have not claimed the stability of the plane-wave solutions. A linear stability
analysis according tōA = αk exp(iκξ)(1+ δβ) yields the linear equation

∂τ δβ = η̄δβ +D(−κ2δβ + i2κ∂ξ δβ + ∂2
ξ δβ)+ r̄|ακ |2(δβ∗ + 2δβ)+ s|ακ |4(2δβ∗ + 3δβ)

−(g − d)κ|ακ |2(2δβ + δβ∗)+ ig|ακ |2∂ξ δβ + id|ακ |2∂ξ δβ∗. (52)

Splitting into real and imaginary parts and and taking the fixed point equation (44) into
account the corresponding real two-dimensional system reads

∂τ

(
Reδβ
Im δβ

)
=
(

2(r̄ −1κ)|ακ |2+ 4s|ακ |4+D∂2
ξ (−2Dκ −1|ακ |2)∂ξ

(2Dκ + (g + d)|ακ |2)∂ξ D∂2
ξ

)(
Reδβ
Im δβ

)
.

(53)

Analysing the stability in terms of plane waves exp(iωξ) yields a two-dimensional
eigenvalue problem, where the trace and the determinant of the corresponding matrix read

Trω = 2[−Dω2+ (r̄ −1κ)|ακ |2+ 2s|ακ |4] (54)

Detω = ω2[D2ω2− 2D(r̄ −1κ)|ακ |2− 4Ds|ακ |4
−(2Dκ + (g + d)|ακ |2)(2Dκ +1|ακ |2)]. (55)

Stability requires Trω < 0 and Detω > 0 for all wavenumbersω. Owing to the simple
dependence onω the condition on the trace results in

|ακ |2 > (r̄ −1κ)/(−2s) (56)

which is of course valid if the right-hand side is negative. Whenever the right-hand side
is positive and the parameters are such that plane-wave solutions are possible, i.e. we are
beyond the saddle-node bifurcation line (cf equations (49) and (50)), then equation (48) tells
us, that the solution with the larger amplitude obeys the constraint (56), whereas the solution
with the smaller amplitude is unstable. Hence we are left with checking the condition on
the determinant which results in

4D(−s)|ακ |2[|ακ |2− (r̄ −1κ)/(−2s)] − (2Dκ + (g + d)|ακ |2)(2Dκ +1|ακ |2) > 0.

(57)

Owing to this condition it is evident that the stability properties depend on the parameters
g and d separately. A complete discussion of the stability using equation (57) is
straightforward but tedious. We do not intend to discuss the full implications of this
inequality, but to just concentrate on a neighbourhood of the envelope (51) in order to
study whether stable solutions are generated at this bifurcation line. For that purpose we
fix the wavenumber toκ = −1r̄/(12

c −12) which is just the value for which the saddle-
node bifurcation line touches the envelope (cf figure 2 and equations (48), (49) and (51))
and expand the left-hand side of equation (57) forη̄ values slightly beyond the envelope
(cf equation (49)). We obtain to the leading order the result

[4D(−s)− 2g1]|ακ |2[|ακ |2− (r̄ −1κ)/(−2s)] > 0. (58)

For the solution with the larger amplitude (cf equation (56)) the condition is satisfied
provided thatg1 < 2D(−s) holds. Then a stable plane wave occurs at the envelope.

4. Conclusion

We have presented the complete and systematic derivation of the amplitude equation, which
governs the transition from sub- to supercritical soft-mode instabilities. Within our approach
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the general expression for the coefficients and especially their dependence on the system
parameters has been obtained. Although these formulae look a little bit lengthy, one should
keep in mind that they can be applied to almost every physical situation, and that their
evaluation is straightforward in concrete cases.

From the principal point of view it is worth a mention that the amplitude equation
(2) can be derived consistently at all. Such a feature is far from obvious. To emphasise
this point consider the corresponding hard-mode case, i.e. an instability atqc = 0 with a
nonvanishing frequency. A superficial inspection would suggest that the whole derivation
goes along the same lines with minor modifications. However, if we follow the approach
of section 2, we are left at the third order with equation (25). Since now all expressions
are complex valued but the higher-order codimension condition requires a vanishing real
part only, the secular condition becomes a nonlinear equation. Of course it can be easily
integrated to yield the time dependence on the scaleτ1 asA = Ã exp[iIm(ρ3)|Ã|2τ1]. Here
the constant of integratioñA depends on the slower scales. If one uses this representation in
the subsequent orders, then the derivatives with respect to spatial coordinates yield linearly
in τ1 increasing terms, since the exponent is space dependent. This feature invalidates
the systematic derivation although a semiquantitative approach has been proposed (cf the
discussion in [10]).

The origin of such difficulties lies in high-frequency components which contribute to the
secular conditions in low orders and cause an uncontrolled mixing of different timescales.
Similar phenomena are well known in the problem of counterpropagating waves, where
a formal derivation is still possible and a nonlocal coupling in the amplitude equation is
generated [11]. For the degenerated hard-mode instability we expect similar effects but
further investigations are needed. Nevertheless these considerations emphasize again the
necessity of careful derivations of amplitude equations to supplement phenomenological
approaches.

Concerning the behaviour beyond the sub- and supercritical soft-mode instability we
stress that without an odd derivative term a potential system occurs. Hence, that kind of
term is responsible for a persistent time evolution beyond the threshold. In addition, we
mention that the difference1 between the normal and the odd derivative term determines
the domain of existence of spatially periodic patterns in the vicinity of the threshold. These
properties again show that the behaviour beyond the instability depends crucially on the
actual numerical values of the coefficients.

Appendix. Inhomogeneous part

For convenience in this appendix we list the inhomogeneous parts which occur in each
stage of the derivation of the amplitude equation. For notational simplicity the same label
is assigned to the components at each order and we use an overbar to denote negative
indicesn̄ = −n. All the abbreviations which we introduce are real values.

If we insert equation (16) into the equation of motion (3) and observe expansion (18)
we obtain at O(ε1/2)

0= L(qc)uc exp(iqcx)A+ c.c. (A1)

since the spatial derivatives act on the plane wave only. This condition is fulfilled by virtue
of the eigenvalue equation for the critical mode (6).

At O(ε) one obtains a contribution from the temporal and spatial derivatives acting on
82 and one contribution from the quadratic nonlinearity (8) atµ = µ

c
with the derivatives
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acting only on the plane waves. Taking abbreviation (11) into account the result reads

∂t82 = L82+
∑
αβ

C(αβ){∂αx 81, ∂
β
x 81} = L82+ C11̄(uc, uc)|A|2

+[C11(uc, uc) exp(2iqcx)A
2+ c.c.]. (A2)

Hence, in the notation of equation (20) the nonvanishing Fourier components read

w0 = −2L(0)020|A|2 w2 = −L(2qc)022A
2 (A3)

where the abbreviations

020 := −L(0)−1C11̄(uc, uc) 022 := −L(2qc)−1C11(uc, uc) (A4)

have been used, and the obvious relationwn̄ = w∗n should be noted. The solution of the
linear equation (A2), discarding exponentially decaying transients, is given by equation (24).

At O(ε3/2) the time derivative and the linear operator act plainly on83. In addition,
these derivatives give a contribution when acting on the slow scales of81. For the
nonlinearities now the quadratic and the cubic terms atµ = µ

c
contribute

∂t83 = L83+ L(1)81+ (L81)
[1] − ∂τ181

+
∑
αβ

2C(αβ){∂αx 82, ∂
β
x 81} +

∑
αβγ

D(αβγ ){∂αx 81, ∂
β
x 81, ∂

γ
x 81}. (A5)

Here the notation(L81)
[1] means that the derivatives have to be evaluated at the first order

in ε. All other derivatives with respect tox are understood at fixed values ofξk. Taking the
relation(∂αx exp(iqcx)A)[1] = α(iqc)α−1 exp(iqcx)∂ξ1A into account the third contribution on
the right-hand side is expressed in terms of the derivative of the matrix (5) with respect
to k. If we evaluate the nonlinear contribution with the help of the solution (24) of the
preceding order and recast all contributions into the form (20) we obtain

w0 = −2L(0)020AB
∗

w1 = −uc∂τ1A+ L(1)(qc)ucA− iL′(qc)uc∂ξ1A

+[2C21̄(022, uc)+ 4C10(uc, 020)+ 3D111̄(uc, uc, uc)]|A|2A
w2 = −2L(2qc)022AB

w3 = −L(3qc)033A
3

(A6)

with the abbreviation

033 := −L−1(3qc)[2C21(022, uc)+D111(uc, uc, uc)]. (A7)

HereL′(k) denotes the derivative with respect tok. The nonsecular solution discarding
transients is given by equation (29) where the abbreviations

031 := −L−1
c

[2C21̄(022, uc)+ 4C10(uc, 020)+ 3D111̄(uc, uc, uc)] (A8)

γ a
31

:= −L−1
c
L′(qc)uc = (1− |uc〉〈vc|)∂kuk(µc)|k=qc (A9)

γ b
31

:= −L−1
c
L(1)(qc)uc = (1− |uc〉〈vc|)(µ(1)∂µ)uqc (µ)|µ=µc (A10)

have been introduced.
Proceeding to O(ε2) one observes that in addition, the parameter dependence of the

quadratic term has to be taken into account (cf equation (15)). Denoting the corresponding
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directional derivative byC(αβ)(1) = (µ(1)∂µ)C(αβ)µ |µ=µc the equation reads

∂t84 = L84+L(1)82+ (L82)
[1] − ∂τ182+

∑
αβ

[C(αβ){∂αx 82, ∂
β
x 82} + 2C(αβ){∂αx 83, ∂

β
x 81}

+2C(αβ){(∂αx 81)
[1], ∂βx 81} + C(αβ)(1){∂αx 81, ∂

β
x 81}]

+
∑
αβγ

3D(αβγ ){∂αx 82, ∂
β
x 81, ∂

γ
x 81}+

∑
αβγ δ

E(αβγ δ){∂αx 81, ∂
β
x 81, ∂

γ
x 81, ∂

δ
x81}.

(A11)

Inserting the solutions of the preceding orders and performing the derivatives we obtain for
the Fourier modes up to wavenumber 2qc

w0 = L(0)[−2020(AC
∗ + A∗C + |B|2)− 2iγ a

40
(A∂ξ1A

∗ − A∗∂ξ1A)− 040|A|4− 2γ b
40
|A|2]

w1 = −uc∂τ1B + L(1)(qc)ucB − iL′(qc)uc∂ξ1B

+[2C21̄(022, uc)+ 4C10(uc, 020)+ 3D111̄(uc, uc, uc)][2|A|2B + A2B∗]
w2 = −L(2qc)[γ b42

A2+ 2022AC + 2iγ a
42
A∂ξ1A+ 042A

∗A3+ 022B
2] (A12)

with the abbreviations

040 := −L(0)−1[2C11̄(031, uc)+ 2C11̄(uc, 031)+ 2C22̄(022, 022)+ 4C00(020, 020)

+3D112̄(uc, uc, 022)+ 3D21̄1̄(022, uc, uc)+ 12D101̄(uc, 020, uc)

+6E111̄1̄(uc, uc, uc, uc)] (A13)

γ a
40

:= −L(0)−1 [−L′(0)020+ C11̄(uc, γ
a

31
)− C̃ 1̄1(uc, uc)] (A14)

γ b
40

:= −L(0)−1[C11̄(γ
b

31
, uc)+ C11̄(uc, γ

b

31
)+ L(1)(0) 020+ C(1)11̄

(uc, uc)] (A15)

042 := −L(2qc)−1[2C11(031, uc)+ 2C31̄(033, uc)+ 4C20(022, 020)

+6D110(uc, uc, 020)+ 6D211̄(022, uc, uc)+ 6E111̄1(uc, uc, uc, uc)] (A16)

γ a
42

:= −L(2qc)−1[−L′(2qc)022− C11(γ
a

31
, uc)− C̃11(uc, uc)] (A17)

γ b
42

:= −L(2qc)−1[2C11(uc, γ
b

31
)+ L(1)(2qc)022+ C(1)11 (uc, uc)] (A18)

and

C̃mn(u, v) := i
∑
αβ

α(imqc)
α−1(inqc)

βC(αβ){u, v}. (A19)

The nonsecular solution of equation (A11) up to Fourier modes±2qc is then given by
equation (32). We remark that, if definitions (A4) are understood in terms of the full
parameter dependent quantities and eigenvectors (cf equations (5), (11) and (6)), then the
abbreviations (A15) and (A18) obey, taking relation (A10) into account

γ b
40
= (µ(1)∂µ)020|µ=µc − 020(〈vc|(µ(1)∂µ)uqc (µ)|µ=µc〉 + c.c.) (A20)

γ b
42
= (µ(1)∂µ)022|µ=µc − 2022〈vc|(µ(1)∂µ)uqc (µ)|µ=µc〉. (A21)

Finally at O(ε5/2) we end up with

∂t85 = L85+ L(1)83+ L(2)81+ (L83)
[1] − ∂τ183+ (L81)

[2] − ∂τ281+ (L(1)81)
[1]

+
∑
αβ

[2C(αβ){∂αx 84, ∂
β
x 81}+2C(αβ){∂αx 83, ∂

β
x 82}+2C(αβ){(∂αx 82)

[1], ∂βx 81}

+2C(αβ){(∂αx 81)
[1], ∂βx 82} + 2C(αβ)(1){∂αx 82, ∂

β
x 81}]
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+
∑
αβγ

[3D(αβγ ){∂αx 83, ∂
β
x 81, ∂

γ
x 81} + 3D(αβγ ){∂αx 82, ∂

β
x 82, ∂

γ
x 81}

+3D(αβγ ){(∂αx 81)
[1], ∂βx 81, ∂

γ
x 81} +D(αβγ )(1){∂αx 81, ∂

β
x 81, ∂

γ
x 81}]

+
∑
αβγ δ

4E(αβγ δ){∂αx 82, ∂
β
x 81, ∂

γ
x 81, ∂

δ
x81}

+
∑
αβγ δε

F (αβγ δε){∂αx 81, ∂
β
x 81, ∂

γ
x 81, ∂

δ
x81, ∂

ε
x81}. (A22)

As beforeD(αβγ )(1) denotes the directional derivative and(L81)
[2] indicates that spatial

derivatives have to be evaluated at O(ε2). Inserting the previous orders and performing the
derivatives the Fourier modew1 of the inhomogeneous part of equation (A22) is evaluated
and yields after some algebra the secular condition (33), taking the abbreviation

D̃lmn(u, v,w) := i
∑
αβγ

α(ilqc)
α−1(imqc)

β(inqc)
γD(αβγ ){u, v,w} (A23)

into account.
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